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Plasma HEC

e PlasmaHEC: ~5M CUs across 11 partners (York, Oxford, Warwick,
Imperial, Strathclyde, Durham, Lancaster, Manchester, QUB, UKAEA,
STFC CLF)

e 83 registered users (43 active)



Plasmas

Gas of charged particles but overall electrically neutral

Responds to self-generated EM fields

Large-scale, long-range collective behaviour

Phenomena cover wide range of spatial and temporal scales

Highly coupled systems

Applications include: biomed, agriculture, space thrusters,
manufacturing, semiconductors, particle accelerators, nuclear fusion




Computational Challenges
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Laser-Plasma Interactions

e LPIs can reflect laser energy, bad

0.6

for fusion schemes
e Can also accelerate particles — i«
double edged sword!

o Enables novel accelerators — e.g. e

table-top GeV wakefield accelerators
o Or can harm compression and
energy gain in fusion

e Experiments can be expensive,
slow, difficult to diagnose

e Simulations crucial tool in
understanding physics

Gosling, Arber et al, in progress
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Laser Wakefield Acceleration

e Drive laser through plasma, accelerates particles, causing charge
separation

e Cavity behind drive pulse has intense electric fields 1 GV/m ~ 1 TV/m
(upto 10,000x greater than RF cavities!)

e (Can accelerate particles to GeV energies in cm~m

e (Can use to generate tunable X-rays and THz beams

e Wide range applications include medical and scientific diagnostics
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Laser-driven particle and radiation sources

optimised using machine learning

e High energy particles and radiation
can be produced from intense
(>102° Wem™) laser-solid
interactions

e Generation dependant on many
parameters such as target
thickness, pulse duration, etc.

 Automated Bayesian optimisation

for:
o Laser-driven proton acceleration [1]
o High energy synchrotron emission [2]

[1] Dolier E. J. et al. New J. Phys. 24, 073024, (2022)
[2] Goodman J. et al. High Power Laser Sci. Eng. 11, e34 (2023)

ARCHER?2 simulation

Protons

~

(" Automated Bayesian optimisation

University of

Strathclyde
Glasgow

Measure output e.g. proton
energy, Yy-ray yield or multi-
parameter combination

Update  Gaussian

model

regression

Inputs new initial conditions such
as target thickness, pulse duration,
etc.
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Laser-driven proton acceleration

o Laser-driven proton acceleration from nanometre-thick
foils is a hybrid of many acceleration mechanisms

e This is enhanced by the onset of relativistic
self-induced transparency (RSIT) producing ~100 MeV

protons [1]

e ARCHER2 was used to simulate long pulses and/or
large interaction volumes at high-resolution

o Self-focusing through the target was found to produce
comparable intensities for different focal diameters [2]

e Spatial intensity contrast of the laser impacts proton
energy and conversion efficiency for multipetawatt

lasers [3]

e The onset time of RSIT is a critical factor in optimising

the maximum proton energy [4]

[1] Higginson A. et al. Nat. Comms. 9, 724 (2018)

[2] Frazer T. P. et al. Phys. Rev. Research 2, 042015 (2020)
[3] Wilson R. et al. Sci. Rep. 12, 1910 (2022)

[4] Goodman J. et al. New J. Phys. 24 053016 (2022)

University of

Strathclyde

Glasgow

Opaque
plasma

Focusing
laser light
4}

o

Plasma 'self-focusing’
+ of intense laser light

4 _ i
Intensity enhancement factor
0 1 2 3
4 0 4 8 12
X (pm)
1.0+ :
0.8+
§ 0.6+
L
“w0.4f
0.2+ ma,=16 map=160
-7 ®wap=50 ma,=310 N
0-0 L 1 1
—-40 -20 0 20 40 8



Magnetic Confinement Fusion

Plasma confined by helical
magnetic field

Challenges around boundary
conditions: large gradients at
edge drive instabilities,
neutrals in exhaust
complicate simulations
ARCHER2 important for
understanding fundamental
physics, diagnosing
experiments, optimising
scenarios, designing future
machines
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Tritium mix effects on lon Cyclotron Emission spectra  warwick
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e lon cyclotron emission (ICE) is suprathermal
emission visible at multiple harmonics of ion
species, Fig. 1

e |CE is caused by magnetoacoustic cyclotron
instability, driven by strong velocity-space gradients
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e Measurement of ICE is passive and multi-angled DUPPTIE. . .. P
e Simulations of ICE in D-T have avoided including

tritium

e EPOCH simulations varying tritium concentration 10
from 0% to ITER ratios of 50% -

> Power spectral features shift down in frequency in a
roughly inverse linear relationship

> PIC simulated ICE spectra of JET plasma 26148 is vy,
better represented with an 11% tritium concentration /"
than with 0% L

w/QD
Fig. 2 Power spectral density of 0%, 1%, 11% (JET 26148 plasma) and 50% tritium
concentration PIC simulations

[1] Cottrell G A, Bhatnagar V P et al. 1993 Nucl. Fusion 33 1365-87
Slade-Harajda, Dendy, et al, in progress 10



Simulations of plasma turbulence in tokamaks

Trying to understand
turbulent transport in existing
tokamaks — physics
underlying saturation

amplitude
o Inform reduced models able to
make faster predictions, enabling
more exploration of design
space.

Microtearing modes in
MAST-U: Fine radial scale and
larger structures — expensive!
Sheared plasma flows can
have a strong impact,
suppressing turbulent
transport and reducing radial
scale of structures.

Giacomin, Dickinson, et al, in progress
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In-out, up-down asymmetries in lower- and upper- connected

double-null configurations
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Osawa, R. T., et al. (2023). Nuclear Fusion, 63(7):076032.
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The effects of different magnetic
configurations on the power balance are
critical for protecting the more vulnerable
inner targets,

Simple models and SOLPS underestimate
the in-out asymmetry, etc.

Plasma turbulence simulations show drift
is responsible for those asymmetries,
and give better agreement with
experiments.
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Preparing for exascale

e EPOC++: rewriting EPOCH (Fortran) in C++ to take advantage of
performance portable frameworks

e Fusion one of the case studies for ExXCALIBUR

e New tokamak edge code led by UKAEA, and developed in collaboration
with UK universities, using advances in algorithms

e Some models with elliptical equations particularly challenging to scale
o Larger problem sizes not always desired!

e Uncertainty quantification, active machine learning as alternative routes
to large(r) scale compute
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